An Asymptotic Numerical Method for non-linear transient dynamics
Keywords:
Perturbation methods, Non-linear Algorithm, Structural Dynamics, F.E.M, SeriesAbstract
The main objective of this presentation is to show that a perburbation method can be very effective for solving a large class of transient non-linear dynamic problems. We describe an algorithm which has three part : apply a perturbation technique to transform a non-linear problem into a series of linear ones, use an FEM and a time stepping scheme to solve the linear problems, perform the summation of the series to get the solution. Usually, the perturbation series has a finite radius of convergence, and the algorithm has to be restarted several times to get the solution on the whole time interval. However, as compared to a classical conbination of time stepping and Newton-Raphson method, the present algorithm requires much less stiffness matrix evaluations and triangulations. The performances of the proposed algorithm will be demonstrated with an example.
Downloads
References
[AMM 96] AMMAR S., Methode asymptotique perturbee appliquee a Ia resolution de problemes
non lineaires en grandes rotations et deplacements, PhD Thesis, Laval University,
QUEBEC, 1996.
[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., "An asymptotic numerical
method to compute the post-buckling behavior of elastic plates and shells", Int. J.
Numer. Meth. Eng., vol. 36, 1993, p. 1251-1277.
[BRA 97] BRAIKAT B., DAMIL N., POTIER-FERRY M., "Methodes asymptotiques numeriques
pour Ia plasticite", Revue Europeenne des Elements Finis, vol. 6, 1997, p. 337-
[COC 94a] COCHELIN B., "A path following technique via an asymptotic numerical method",
Computers & Structures, vol. 29, 1994, p. 1181-1192.
[COC 94b] COCHELIN B., DAMIL N., POTIER-FERRY M., "The Asymptotic-NumericalMethod:
an efficient perturbation technique for nonlinear structural mechanics", Revue
Europeenne des Elements Finis, vol. 3, 1994, p. 281-297.
[COC 94c] COCHELIN B., DAMIL N., POTIER-FERRY M., "Asymptotic-Numerical Methods
and Pade approximants for nonlinear elastic structures", Int. J. Numer. Meth. Eng., vol. 37,
, p. 1181-1192.
[CRI 97] CRISFIELD M.A., Nonlinear Finite Element Analysis of Solids ans Structures, Vo/.2,
John Wiley and Sons, I st edition, 1997.
[DAM 90] DAMIL N., POTIER-FERRY M., "A new method to compute perturbed bifurcations:
application to the buckling of imperfect elastic structures", International Journal of
Engineering Sciences - N9, vol. 28, 1990, p. 943-957.
[ELH 98] ELHAGE-HUSSEIN A., DAMIL N., POTIER-FERRY M., "An asymptotic numerical
algorithm for frictionless contact problems", Revue Europeenne des Elements Finis, vol. 7,
, p. 119-130.
[FAF 97] FAFARD M., AMMAR S., HENCH! K., GENDRON G., "Application of an asymptotic
method to transient dynamic problems", Journal of Sound and Vibration, vol. 208, 1997,
p. 73-99.
[GAL 75] GALLAGHER R., "Perturbation procedures in nonlinear finite element structural
analysis", Computational Mechanics - Lecture Notes in Mathematics, vol. 461, 1975,
p. 75-89.
[KHU 96] KHUL D., RAMM E., "Constraint Energy Momentum Algorithm and its application
to nonlinear dynamics of shells", Comput. Methods Appl. Mech. Engrg., vol. 136, 1996,
p. 293-315.
(NAJ 98) NAJAH A., COCHELIN B.AND DAMIL N., POTIER-FERRY M., "A critical review
of Asymptotic Numerical Methods", Archives of Computational Methods in Engineering,
vol. 5, 1998, p. 31-50.
[NAY 73) NAYFEH A., Perturbation methods, John Wiley and Sons- New York, 1973.
[NAY 89) NAYFEH A., MOOK T., Nonlinear Oscillations, Whiley Classic Library, 2nd edition,
[NOO 80a] NOOR A., PETERS 1 ., "Reduced basis technique for nonlinear analysis of structures",
AIAA Journal- N4, vol. 18, 1980, p. 455-462.
[NOO SOb] NooR A., PETERS J., "Tracing Post-Limit-Point Paths with reduced Basis Technique",
Comput. Methods Appl. Mech. Engrg., vol. 28, 1980, p. 217-240.
[NOO 85] NOOR A., "Hybrid analytical technique for nonlinear analysis of structures", AIAA
Journal - N6, vol. 23, 1985, p. 938-946.
(POT 97) POTIER-FERRY M., DAMIL N., BRAIKAT B., DESCAMPS 1., CADOU 1., CAO H.,
ELHAGEHUSSEIN A., "Traitement des fortes non-linearite par Ia methode asymptotique
numerique", C. R. A cad. Sci. Paris, vol. t 314, 1997, p. 171-177, Serie II b.
[RIK 84] RIKS E., "Some Computational aspects of stability of nonlinear structures", Comput.
MethodsAppl. Mech. Engrg., vol. 47,1984, p. 219-259.
[SIM 96) SIMO 1., TARNOW N., "The discrete Energy-Momentum method. Conserving algorithms
for nonlinear elastodynamics", Int. J. Numer. Meth. Eng., vol. 136, 1996, p. 293-
[SWE 90) SWEMPLINSKA-STUPNICKA W., The Behavior of Nonlinear Vibrating Systems -
Vol. I and 2, Kluwer Academic Publisher, I st edition, 1990.
[THO 68) THOMPSON 1 ., WALKER A., 'The nonlinear perturbation analysis of discrete structural
systems", Int. J. Solids Structures, vol. 4, 1968, p. 757-758.
[WAL 69) WALKER A., "A nonlinear finite element analysis of shallow circular arches", Int.
J. Solids Structures, vol. 5, 1969, p. 97-107.
(ZAH 99) ZAHROUNI H., COCHELIN B., POTIER-FERRY M., "Asymptotic-numerical methods
for shells with finite rotations", Comput. Methods Appl. Mech. Engrg., vol. 175, 1999,
p. 71-85.