Résolution de petits systèmes algébriques par la MAN sous Matlab
Keywords:
Continuation, Asymptotic numerical method, MatlabAbstract
This paper presents a Matlab software for the continuation of solutions of algebraic systems with parameters. We recall the principle of continuation with the MAN with an example, and we progressively introduce all the routines of the program. Next, we discuss the problem of finding a first solution point on the branch, and the problem of jumping onto another branch. A few additional examples are given to insist on a crucial point : writing the equation in a quadratic framework.
Downloads
References
[ALL 90] ALLGOWER K., GEORG K., Numerical continuation methods, an introduction,
vol. 13 of Springer series in Computational Mathematics, Springer-Verlag, New-york,
[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., « An asymptotic numerical
method to compute the post-buckling behavior of elastic plates and shells », International
Journal for Numerical Methods in Engineering, vol. 36, 1993, p. 1251-1277.
[BAG 03] BAGUET S., COCHELIN B., « On the behaviour of the ANM in the presence of
bifurcations », Communications in Numerical Methods in Engineering, vol. 19, 2003,
p. 459-471.
[COC 94] COCHELIN B., DAMIL N., POTIER-FERRY M., « The Asymptotic-Numerical-
Method : an efficient perturbation technique for nonlinear structural mechanics », Revue
Européenne des Éléments Finis, vol. 3, 1994, p. 281-297.
[CRI 97] CRISFIELD M., Non-linear finite element analysis of solids and structures, vol. 2,
Wiley, New York, 1997.
[DAM 90] DAMIL N., POTIER-FERRY M., « A new method to compute perturbed bifurcations
: application to the buckling of imperfect elastic structures », International Journal of
Engineering Sciences - N9, vol. 28, 1990, p. 943-957.
[DOE 91] DOEDEL E., KELLER H., KERNEVEZ J., « Numerical analysis and control of bifurcation
problems (i) bifurcation in finite dimensions », International Journal of Bifurcation
and Chaos, vol. 1, 1991, p. 493-520.
[KEL 87] KELLER H., « Lectures on numerical methods in bifurcation problems », Notes by
Nandakumaran and Ramaswamy, Bangalore, 1987, Springer-Verlag.
[MAL 00] MALLIL E., LAHMAM H., DAMIL N., POTIER-FERRY M., « An iterative process
based on homotopy and perturbation technique », Computer Methods in Applied Mechanics
and Engineering, vol. 190, 2000, p. 1845-1858.
[POT 97] POTIER-FERRY M., DAMIL N., BRAIKAT B., DESCAMPS J., CADOU J., CAO H.,
ELHAGEHUSSEIN A., « Traitement des fortes non-linéarités par la méthode asymptotique
numérique », Compte Rendu de l’Académie des Sciences, vol. 314, 1997, p. 171-177,
Serie II b.
[SEY 94] SEYDEL R., Practical bifurcation and stability analysis, from equilibrium to chaos,
Springer-Verlag, New York, 1994.