Résolution de petits systèmes algébriques par la MAN sous Matlab

Authors

  • Bruno Cochelin Laboratoire de Mécanique et d’Acoustique CNRS UPR 7051 Ecole d’Ingénieurs Généralistes de Marseille Technopôle de Château Gombert F-13383 Marseille Cedex 20
  • Franck Pérignon Laboratoire de Mécanique et d’Acoustique CNRS UPR 7051 Ecole d’Ingénieurs Généralistes de Marseille Technopôle de Château Gombert F-13383 Marseille Cedex 20

Keywords:

Continuation, Asymptotic numerical method, Matlab

Abstract

This paper presents a Matlab software for the continuation of solutions of algebraic systems with parameters. We recall the principle of continuation with the MAN with an example, and we progressively introduce all the routines of the program. Next, we discuss the problem of finding a first solution point on the branch, and the problem of jumping onto another branch. A few additional examples are given to insist on a crucial point : writing the equation in a quadratic framework.

Downloads

Download data is not yet available.

References

[ALL 90] ALLGOWER K., GEORG K., Numerical continuation methods, an introduction,

vol. 13 of Springer series in Computational Mathematics, Springer-Verlag, New-york,

[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., « An asymptotic numerical

method to compute the post-buckling behavior of elastic plates and shells », International

Journal for Numerical Methods in Engineering, vol. 36, 1993, p. 1251-1277.

[BAG 03] BAGUET S., COCHELIN B., « On the behaviour of the ANM in the presence of

bifurcations », Communications in Numerical Methods in Engineering, vol. 19, 2003,

p. 459-471.

[COC 94] COCHELIN B., DAMIL N., POTIER-FERRY M., « The Asymptotic-Numerical-

Method : an efficient perturbation technique for nonlinear structural mechanics », Revue

Européenne des Éléments Finis, vol. 3, 1994, p. 281-297.

[CRI 97] CRISFIELD M., Non-linear finite element analysis of solids and structures, vol. 2,

Wiley, New York, 1997.

[DAM 90] DAMIL N., POTIER-FERRY M., « A new method to compute perturbed bifurcations

: application to the buckling of imperfect elastic structures », International Journal of

Engineering Sciences - N9, vol. 28, 1990, p. 943-957.

[DOE 91] DOEDEL E., KELLER H., KERNEVEZ J., « Numerical analysis and control of bifurcation

problems (i) bifurcation in finite dimensions », International Journal of Bifurcation

and Chaos, vol. 1, 1991, p. 493-520.

[KEL 87] KELLER H., « Lectures on numerical methods in bifurcation problems », Notes by

Nandakumaran and Ramaswamy, Bangalore, 1987, Springer-Verlag.

[MAL 00] MALLIL E., LAHMAM H., DAMIL N., POTIER-FERRY M., « An iterative process

based on homotopy and perturbation technique », Computer Methods in Applied Mechanics

and Engineering, vol. 190, 2000, p. 1845-1858.

[POT 97] POTIER-FERRY M., DAMIL N., BRAIKAT B., DESCAMPS J., CADOU J., CAO H.,

ELHAGEHUSSEIN A., « Traitement des fortes non-linéarités par la méthode asymptotique

numérique », Compte Rendu de l’Académie des Sciences, vol. 314, 1997, p. 171-177,

Serie II b.

[SEY 94] SEYDEL R., Practical bifurcation and stability analysis, from equilibrium to chaos,

Springer-Verlag, New York, 1994.

Downloads

Published

2004-06-18

How to Cite

Cochelin, B. ., & Pérignon, F. . (2004). Résolution de petits systèmes algébriques par la MAN sous Matlab. European Journal of Computational Mechanics, 13(1-2), 79–96. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2367

Issue

Section

Original Article

Most read articles by the same author(s)