Stability of thin-shell structures and imperfection sensitivity analysis with the Asymptotic Numerical Method
Keywords:
buckling, thin shells, imperfection sensitivity, fold line, extended system, Asymptotic Numerical Method, finite elementsAbstract
This paper is concerned with stability behaviour and imperfection sensitivity of thin elastic shells. The aim is to determine the reduction of the critical buckling load as a function of the imperfection amplitude. For this purpose, the direct calculation of the so-called fold line connecting all the limit points of the equilibrium branches when the imperfection varies is performed. This fold line is the solution of an extended system demanding the criticality of the equilibrium. The Asymptotic Numerical Method is used as an alternative to Newton-like incremental-iterative procedures for solving this extended system. It results in a very robust and efficient path-following algorithm that takes the singularity of the tangent stiffness matrix into account. Two specific types of imperfections are detailed and several numerical examples are discussed.
Downloads
References
[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., “An asymptotic numerical
method to compute the post-buckling behavior of elastic plates and shells”, International
Journal for Numerical Methods in Engineering, vol. 36, 1993, p. 1251-1277.
[BAG 00] BAGUET S., COCHELIN B., “Direct computation of paths of limit points using the
Asymptotic Numerical Method”, IASS-IACM 2000, 4th International Colloquium on Computation
of Shell & Spatial Structures, Chania - Crete, Greece, June 5-7 2000.
[BAG 01] BAGUET S., “Stabilité des structures minces et sensibilité aux imperfections par la
Méthode Asymptotique Numérique”, Mémoire de Thèse de Doctorat, École Supérieure de
Mécanique de Marseille, Université d’Aix-Marseille II, 2001.
[BAT 92] BATOZ J., DHATT G., Modélisation des structures par éléments finis, vol. 1,2,3,
Hermès, Paris, 1992.
[BOU 95] BOUTYOUR E., “Détection des bifurcations par des méthodes asymptotiquesnumériques”,
Deuxième colloque national en calcul des structures, vol. 2, Giens, France,
May 1995, p. 687-692.
[COC 94a] COCHELIN B., “A path following technique via an asymptotic numerical method”,
Computers & Structures, vol. 29, 1994, p. 1181-1192.
[COC 94b] COCHELIN B., DAMIL N., POTIER-FERRY M., “The Asymptotic-Numerical-
Method: an efficient perturbation technique for nonlinear structural mechanics”, Revue
Européenne des Éléments Finis, vol. 3, 1994, p. 281-297.
[COC 94c] COCHELIN B., DAMIL N., POTIER-FERRYM., “Asymptotic-Numerical Methods
and Pade approximants for nonlinear elastic structures”, International Journal for Numerical
Methods in Engineering, vol. 37, 1994, p. 1181-1192.
[CRI 81] CRISFIELD M., “A fast incremental/iterative solution procedure that handles “snapthrough””,
Computers & Structures, vol. 13, 1981, p. 55-62.
[CRI 97] CRISFIELD M., Non-linear finite element analysis of solids and structures, vol. 2,
Wiley, New York, 1997.
[DAM 90] DAMIL N., POTIER-FERRY M., “A new method to compute perturbed bifurcations:
application to the buckling of imperfect elastic structures”, International Journal of
Engineering Sciences - N9, vol. 28, 1990, p. 943-957.
[DEM 97] DEML M.,WUNDERLICHW., “Direct evaluation of the ‘worst’ imperfection shape
in shell buckling”, Computer Methods in Applied Mechanics and Engineering, vol. 149,
, p. 201-222.
[ELH 00] ELHAGE-HUSSEIN A., POTIER-FERRY M., DAMIL N., “A numerical continuation
method based on Padé approximants”, International Journal of Solids and Structures,
vol. 37, 2000, p. 6981-7001.
[ERI 94] ERIKSSON A., “Fold lines for sensitivity analyses in structural instability”, Computer
Methods in Applied Mechanics and Engineering, vol. 114, 1994, p. 77-101.
[ERI 99] ERIKSSON A., PACOSTE C., ZDUNEK A., “Numerical Analysis of complex instability
behaviour using incremental-iterative strategies”, Computer Methods in Applied Mechanics
and Engineering, vol. 179, 1999, p. 265-305.
[JEP 85] JEPSON A., SPENCE A., “Folds in solutions of two parameter systems and their
calculation. Part I”, S.I.A.M. Journal of numerical analysis, vol. 22, 1985, p. 347-368.
[KEE 73] KEENER J., KELLER H., “Perturbed bifurcation theory”, Archives for Rational
Mechanics and Analysis, vol. 50, 1973, p. 159-179.
[LAD 98] LADEVÈZE P., Nonlinear Computational Structural Mechanics, Springer-Verlag,
New York, 1998.
[LEG 02] LEGAY A., COMBESCURE A., “Efficient algorithms for parametric non-linear instability
analysis”, International Journal of Non-linear Mechanics, vol. 37, 2002, p. 709-722.
[MOO 80] MOORE G., SPENCE A., “The calculation of turning points of nonlinear equations”,
S.I.A.M. Journal of numerical analysis, vol. 17, 1980, p. 567-576.
[NAJ 98] NAJAH A., COCHELIN B., DAMIL N., POTIER-FERRY M., “A critical review of
Asymptotic Numerical Methods”, Archives of Computational Methods in Engineering,
vol. 5, 1998, p. 31-50.
[POT 97] POTIER-FERRY M., DAMIL N., BRAIKAT B., DESCAMPS J., CADOU J., CAO H.,
ELHAGEHUSSEIN A., “Traitement des fortes non-linéarités par la méthode asymptotique
numérique”, Compte Rendu de l’Académie des Sciences, vol. t 314, 1997, p. 171-177,
Serie II b.
[REI 95] REITINGER R., RAMM E., “Buckling and imperfection sensitivity in the optimization
of shell structures”, Thin-Walled Structures, vol. 23, 1995, p. 159-177.
[RIK 72] RIKS E., “The application of Newton’s method to the problem of elastic stability”,
Journal of Applied Mechanics, Transactions of A.S.M.E, vol. 39, 1972, p. 1060-1066.
[THO 68] THOMPSON J.,WALKER A., “The nonlinear perturbation analysis of discrete structural
systems”, International Journal of Solids and Structures, vol. 4, 1968, p. 757-758.
[WEI 85] WEINITSCHKE H., “On the calculation of limit and bifurcation points in stability
problems of elastic shells”, International Journal of Solids and Structures, vol. 21, num. 1,
, p. 79-95.
[WRI 88] WRIGGERS P.,WAGNER W., MIEHE C., “A quadratically convergent procedure for
the calculation of stability points in finite element analysis”, Computer Methods in Applied
Mechanics and Engineering, vol. 70, 1988, p. 329-347.
[WRI 90] WRIGGERS P., SIMO J., “A general procedure for the direct calculation of turning
and bifurcation points”, International Journal for Numerical Methods in Engineering,
vol. 30, 1990, p. 155-176.