Stability of thin-shell structures and imperfection sensitivity analysis with the Asymptotic Numerical Method

Authors

  • Sébastien Baguet Laboratoire de Mécanique et d’Acoustique CNRS UPR 7051 Ecole Supérieure de Mécanique de Marseille IMT Technopôle de Château Gombert F-13451 Marseille Cedex 20
  • Bruno Cochelin Laboratoire de Mécanique et d’Acoustique CNRS UPR 7051 Ecole Supérieure de Mécanique de Marseille IMT Technopôle de Château Gombert F-13451 Marseille Cedex 20

Keywords:

buckling, thin shells, imperfection sensitivity, fold line, extended system, Asymptotic Numerical Method, finite elements

Abstract

This paper is concerned with stability behaviour and imperfection sensitivity of thin elastic shells. The aim is to determine the reduction of the critical buckling load as a function of the imperfection amplitude. For this purpose, the direct calculation of the so-called fold line connecting all the limit points of the equilibrium branches when the imperfection varies is performed. This fold line is the solution of an extended system demanding the criticality of the equilibrium. The Asymptotic Numerical Method is used as an alternative to Newton-like incremental-iterative procedures for solving this extended system. It results in a very robust and efficient path-following algorithm that takes the singularity of the tangent stiffness matrix into account. Two specific types of imperfections are detailed and several numerical examples are discussed.

Downloads

Download data is not yet available.

References

[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., “An asymptotic numerical

method to compute the post-buckling behavior of elastic plates and shells”, International

Journal for Numerical Methods in Engineering, vol. 36, 1993, p. 1251-1277.

[BAG 00] BAGUET S., COCHELIN B., “Direct computation of paths of limit points using the

Asymptotic Numerical Method”, IASS-IACM 2000, 4th International Colloquium on Computation

of Shell & Spatial Structures, Chania - Crete, Greece, June 5-7 2000.

[BAG 01] BAGUET S., “Stabilité des structures minces et sensibilité aux imperfections par la

Méthode Asymptotique Numérique”, Mémoire de Thèse de Doctorat, École Supérieure de

Mécanique de Marseille, Université d’Aix-Marseille II, 2001.

[BAT 92] BATOZ J., DHATT G., Modélisation des structures par éléments finis, vol. 1,2,3,

Hermès, Paris, 1992.

[BOU 95] BOUTYOUR E., “Détection des bifurcations par des méthodes asymptotiquesnumériques”,

Deuxième colloque national en calcul des structures, vol. 2, Giens, France,

May 1995, p. 687-692.

[COC 94a] COCHELIN B., “A path following technique via an asymptotic numerical method”,

Computers & Structures, vol. 29, 1994, p. 1181-1192.

[COC 94b] COCHELIN B., DAMIL N., POTIER-FERRY M., “The Asymptotic-Numerical-

Method: an efficient perturbation technique for nonlinear structural mechanics”, Revue

Européenne des Éléments Finis, vol. 3, 1994, p. 281-297.

[COC 94c] COCHELIN B., DAMIL N., POTIER-FERRYM., “Asymptotic-Numerical Methods

and Pade approximants for nonlinear elastic structures”, International Journal for Numerical

Methods in Engineering, vol. 37, 1994, p. 1181-1192.

[CRI 81] CRISFIELD M., “A fast incremental/iterative solution procedure that handles “snapthrough””,

Computers & Structures, vol. 13, 1981, p. 55-62.

[CRI 97] CRISFIELD M., Non-linear finite element analysis of solids and structures, vol. 2,

Wiley, New York, 1997.

[DAM 90] DAMIL N., POTIER-FERRY M., “A new method to compute perturbed bifurcations:

application to the buckling of imperfect elastic structures”, International Journal of

Engineering Sciences - N9, vol. 28, 1990, p. 943-957.

[DEM 97] DEML M.,WUNDERLICHW., “Direct evaluation of the ‘worst’ imperfection shape

in shell buckling”, Computer Methods in Applied Mechanics and Engineering, vol. 149,

, p. 201-222.

[ELH 00] ELHAGE-HUSSEIN A., POTIER-FERRY M., DAMIL N., “A numerical continuation

method based on Padé approximants”, International Journal of Solids and Structures,

vol. 37, 2000, p. 6981-7001.

[ERI 94] ERIKSSON A., “Fold lines for sensitivity analyses in structural instability”, Computer

Methods in Applied Mechanics and Engineering, vol. 114, 1994, p. 77-101.

[ERI 99] ERIKSSON A., PACOSTE C., ZDUNEK A., “Numerical Analysis of complex instability

behaviour using incremental-iterative strategies”, Computer Methods in Applied Mechanics

and Engineering, vol. 179, 1999, p. 265-305.

[JEP 85] JEPSON A., SPENCE A., “Folds in solutions of two parameter systems and their

calculation. Part I”, S.I.A.M. Journal of numerical analysis, vol. 22, 1985, p. 347-368.

[KEE 73] KEENER J., KELLER H., “Perturbed bifurcation theory”, Archives for Rational

Mechanics and Analysis, vol. 50, 1973, p. 159-179.

[LAD 98] LADEVÈZE P., Nonlinear Computational Structural Mechanics, Springer-Verlag,

New York, 1998.

[LEG 02] LEGAY A., COMBESCURE A., “Efficient algorithms for parametric non-linear instability

analysis”, International Journal of Non-linear Mechanics, vol. 37, 2002, p. 709-722.

[MOO 80] MOORE G., SPENCE A., “The calculation of turning points of nonlinear equations”,

S.I.A.M. Journal of numerical analysis, vol. 17, 1980, p. 567-576.

[NAJ 98] NAJAH A., COCHELIN B., DAMIL N., POTIER-FERRY M., “A critical review of

Asymptotic Numerical Methods”, Archives of Computational Methods in Engineering,

vol. 5, 1998, p. 31-50.

[POT 97] POTIER-FERRY M., DAMIL N., BRAIKAT B., DESCAMPS J., CADOU J., CAO H.,

ELHAGEHUSSEIN A., “Traitement des fortes non-linéarités par la méthode asymptotique

numérique”, Compte Rendu de l’Académie des Sciences, vol. t 314, 1997, p. 171-177,

Serie II b.

[REI 95] REITINGER R., RAMM E., “Buckling and imperfection sensitivity in the optimization

of shell structures”, Thin-Walled Structures, vol. 23, 1995, p. 159-177.

[RIK 72] RIKS E., “The application of Newton’s method to the problem of elastic stability”,

Journal of Applied Mechanics, Transactions of A.S.M.E, vol. 39, 1972, p. 1060-1066.

[THO 68] THOMPSON J.,WALKER A., “The nonlinear perturbation analysis of discrete structural

systems”, International Journal of Solids and Structures, vol. 4, 1968, p. 757-758.

[WEI 85] WEINITSCHKE H., “On the calculation of limit and bifurcation points in stability

problems of elastic shells”, International Journal of Solids and Structures, vol. 21, num. 1,

, p. 79-95.

[WRI 88] WRIGGERS P.,WAGNER W., MIEHE C., “A quadratically convergent procedure for

the calculation of stability points in finite element analysis”, Computer Methods in Applied

Mechanics and Engineering, vol. 70, 1988, p. 329-347.

[WRI 90] WRIGGERS P., SIMO J., “A general procedure for the direct calculation of turning

and bifurcation points”, International Journal for Numerical Methods in Engineering,

vol. 30, 1990, p. 155-176.

Downloads

Published

2002-12-06

How to Cite

Baguet, S. ., & Cochelin, B. . (2002). Stability of thin-shell structures and imperfection sensitivity analysis with the Asymptotic Numerical Method. European Journal of Computational Mechanics, 11(2-4), 493–509. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2633

Issue

Section

Original Article

Most read articles by the same author(s)